
Laravel E-Signature Project — Full Scaffold
Language: Laravel (PHP)

Goal: Single Laravel application with two roles (Admin / User). Users can upload documents and add
signatures (drag & drop or draw). Admin can approve/cancel documents. Dashboards for both roles with
graphs and document lists.

Features (as requested)

Roles: admin , user (role field on users table)
Authentication: Laravel Breeze or Fortify (simple auth scaffolding)
Admin sidebar: Dashboard (graphs), Categories: Documents → Pending / Approved / Cancelled, User
Management (Create / List / Edit / Delete)
User sidebar: Dashboard (report/graph), Upload Document, Document Approved, Document
Pending, Add Document
Header: Logout option
Document flow:
User uploads document (PDF / image / Word — convert to PDF via LibreOffice or accept PDF only)
On document view, user can place signature(s) by: drag & drop a pre-saved signature image, or draw
a signature using HTML5 canvas and drop it onto the document overlay
Signatures are saved as coordinates + scale + rotation on the document (so they can be rendered on
the PDF when viewing or printing)
Admin can approve , cancel documents
Users can check status (Pending / Approved / Cancelled)

Tech stack & dependencies

Laravel 10+
PHP 8.1+
MySQL / MariaDB
Composer packages suggested:
laravel/breeze or laravel/ui
barryvdh/laravel-dompdf (generate PDFs with signatures applied)
spatie/laravel-permission (optional, for roles/permissions)
ramsey/uuid (optional for filenames)

Frontend: Blade + Tailwind (you can use Bootstrap if preferred)
JS: PDF.js (for rendering PDF pages inside the browser), Fabric.js (optional) or a simple overlay with
absolute-positioned canvases for drag/drop

•
•
•

•

•
•
•
•

•

•
•

•
•
•
•
•
•
•
•
•
•

1

Signature

Database schema (important tables)

users

id
name
email
password
role ENUM('admin','user') default 'user'
timestamps

documents

id
user_id (uploader)
title
filename (stored path)
original_filename
mime
status ENUM('pending','approved','cancelled') default 'pending'
approved_by (nullable) user id
approved_at (nullable) datetime
notes (nullable)
created_at, updated_at

signatures

id
user_id (who created the signature image or drawing)
name
image_path (signature png/svg)
created_at

document_signatures (placements)

id
document_id
signature_id (nullable if drawn ad-hoc stored separately)
placed_by (user id)
page_number (int)
x (float) — percentage from left (0..100)
y (float) — percentage from top (0..100)
width_percent (float) — width relative to page width
rotation (float)
created_at

•
•
•
•
•
•

•
•
•
•
•
•
•
•
•
•
•

•
•
•
•
•

•
•
•
•
•
•
•
•
•
•

2

Migrations (example snippets)

// create_documents_table

Schema::create('documents', function (Blueprint $table) {

 $table->id();

 $table->foreignId('user_id')->constrained()->cascadeOnDelete();

 $table->string('title');

 $table->string('filename');

 $table->string('original_filename');

 $table->string('mime');

 $table->enum('status',['pending','approved','cancelled'])->default('pending');

 $table->foreignId('approved_by')->nullable()->constrained('users');

 $table->timestamp('approved_at')->nullable();

 $table->text('notes')->nullable();

 $table->timestamps();

});

// create_document_signatures_table

Schema::create('document_signatures', function (Blueprint $table) {

 $table->id();

 $table->foreignId('document_id')->constrained()->cascadeOnDelete();

 $table->foreignId('signature_id')->nullable()->constrained()->nullOnDelete();

 $table->foreignId('placed_by')->constrained('users')->cascadeOnDelete();

 $table->integer('page_number')->default(1);

 $table->float('x');

 $table->float('y');

 $table->float('width_percent');

 $table->float('rotation')->default(0);

 $table->timestamps();

});

Models

User (with isAdmin() helper)
Document (relationship: user, signatures)
Signature (relationship: user)
DocumentSignature (relationship: document, signature)

Add scopes: scopePending , scopeApproved on Document.

•
•
•
•

3

Routes (web.php) — core

Route::middleware(['auth'])->group(function(){

 // User routes

 Route::get('/dashboard','DashboardController@index')->name('dashboard');

 Route::get('/documents','DocumentController@index')->name('documents.index');

 Route::get('/documents/create','DocumentController@create')-

>name('documents.create');

 Route::post('/documents','DocumentController@store')->name('documents.store');

 Route::get('/documents/{document}','DocumentController@show')-

>name('documents.show');

 Route::post('/documents/{document}/place-

signature','DocumentController@placeSignature')-

>name('documents.placeSignature');

 // Admin-only

 Route::middleware('is_admin')->group(function(){

 Route::get('/admin','Admin\DashboardController@index');

 Route::resource('admin/users','Admin\UserController');

 Route::get('admin/documents/pending','Admin\DocumentController@pending');

 Route::post('admin/documents/{document}/

approve','Admin\DocumentController@approve');

 Route::post('admin/documents/{document}/

cancel','Admin\DocumentController@cancel');

 });

});

is_admin middleware checks auth()->user()->role === 'admin' .

Controllers — key logic

DocumentController@store

Validate file (pdf, png, jpg)
Store file in storage/app/public/documents/{user_id}/...
Create Document record with status = pending

DocumentController@show

Render view with PDF.js canvas rendering the PDF pages
Overlay an absolutely-positioned HTML element (container) that represents page area
Fetch existing document_signatures for that document and render each signature at calculated
pixel positions using stored percentages
Provide UI to drag & drop a signature image or draw one via canvas

•
•
•

•
•
•

•

4

DocumentController@placeSignature (AJAX)

Accept { signature_id | dataURL, page_number, x_percent, y_percent,
width_percent, rotation }

If dataURL (drawn), save PNG to disk and create a Signature record or create placement with
signature_id = null but store image_path

Create DocumentSignature row
Return JSON success

Admin\DocumentController@approve

document->update(['status'=>'approved','approved_by'=>auth()-

>id(),'approved_at'=>now()])

Optionally render final PDF with signatures burned in using barryvdh/laravel-dompdf or
external service

Frontend ideas (signature UI)

Use PDF.js to render PDF pages into <canvas> elements.
Place a transparent overlay div above each canvas of same size & position with
position:absolute; top:0; left:0; .

When user drags a signature image from the signature-list, create a new absolutely-positioned
 inside overlay and make it draggable/resizable (use interact.js or simple pointer events).

On drop, compute percentage coordinates:
x_percent = (left_px / page_width_px) * 100

y_percent = (top_px / page_height_px) * 100

width_percent = (img_width_px / page_width_px) * 100

POST to documents/{id}/place-signature with values.
For drawing: provide a simple canvas where user draws (signature). On save, convert to dataURL and
upload similarly (store image and place it as above).

Small example JS pseudocode (drop handler):

// on drop

const rect = pageCanvas.getBoundingClientRect();

const left = droppedEl.offsetLeft;

const top = droppedEl.offsetTop;

const x_percent = (left/rect.width)*100;

const y_percent = (top/rect.height)*100;

const width_percent = (droppedEl.offsetWidth/rect.width)*100;

fetch(`/documents/${docId}/place-signature`, {

method:'POST',

headers:{ 'Content-Type':'application/json', 'X-CSRF-TOKEN': csrf },

body: JSON.stringify({ page_number, x: x_percent, y: y_percent,

•

•

•
•

•

•

1.
2.

3.

4.
5.
6.
7.
8.
9.

5

width_percent, signature_id })

})

Blade structure (suggested)

layouts/app.blade.php — header (logout), sidebar (render based on
auth()->user()->role), content
admin/* views (user management, doc lists)
user/documents/* (upload form, list, show)

Dashboard graphs

Use Chart.js to show: total documents, pending, approved, cancelled; per-day uploads; top users by
uploads
Controller returns simple aggregated counts for the charts via JSON or blade-props

Seeders

UserSeeder to create an admin account (email: admin@example.com / password: secret) and
some sample users
DocumentSeeder to create sample documents

Useful dev commands

composer install

cp .env.example .env

php artisan key:generate

configure DB credentials in .env

php artisan migrate --seed

php artisan storage:link

npm install

npm run dev

php artisan serve

Security & production notes

Validate uploads strictly and scan for harmful files.

•

•
•

•

•

•

•

•

6

Serve documents from signed temporary URLs if private.
When burning signatures to PDF ensure the process is tamper-evident (log who approved and when)

Deliverables included in this scaffold (what I prepared here)

Database schema & migration examples
Models & relationships description
All essential routes and controllers explained with example snippets
Frontend approach for PDF rendering and signature placement (drop/draw)
Admin/user UI structure and list of Blade views to implement
Seeders & installation steps

If you want, next steps I can do for you (pick one): - Generate the complete project file tree and provide a
downloadable ZIP with working controllers, migrations and basic Blade views (so you can composer
install and run). - Create a Git repository and push the scaffold (you can give a repo name). - Implement
the full drag/drop signature UI using PDF.js + interact.js with working AJAX endpoints (this is more code but
I can start and deliver a zip).

Notes: I placed detailed implementation guidance and code examples above so a developer can build this quickly.
If you want the full ready-to-run Laravel repo ZIP, tell me and I will prepare it next.

•
•

1.
2.
3.
4.
5.
6.

7

