
1 | P a g e

AI with Python
Practical file

(MCA201C)

Submitted to- Submitted by-

Mrs. Jyoti Sharma KUNAL

 MCA 2nd year

 23021541017

South Point Institute of

Technology And Management

17/11/2025

2 | P a g e

Index

Sno. Title Pgno. Signature
1. Depth first search 3

2. Breadth first search 4

3. A*algorithm 5-7

4. Min-max algorithm of Game
Theory

8-9

5. Write a Program to analyze
data and display in the form
of a bar graph for two
departments of acompany
having employee id numbers
on X-axis and their salaries
on Y axis.

10

6. Write a program to
analyze and draw a line
graph to show the profits
of a company in various

years.

11

7. Customer segmentation
project using K Means
Clustering.

12-16

8. Music genre classification
project.

17-20

9. Stock price prediction project
using LSTM (Long short-term
memory).

21-24

10. Fake news detection project. 25-31

17/11/2025

3 | P a g e

1. Depth-First Search

graph = {

'5': ['3', '7'],

'3': ['2', '4'],

'7': ['8'],

'2': [],

'4': ['8'],

'8': []

}

visited = set()

def dfs(visited, graph, node):

if node not in visited:

print(node)

visited.add(node)

for neighbour in graph[node]:

dfs(visited, graph, neighbour)

print("Depth-First Search:")

dfs(visited, graph, '5')

Output:

4 | P a g e

2. Breadth First Search

graph = {

'5' : ['3','7'],

'3' : ['2', '4'],

'7' : ['8'],

'2' : [],

'4' : ['8'],

'8' : []

}

visited = []

queue = []

def bfs(visited, graph, node): #function for BFS

visited.append(node)

queue.append(node)

while queue:

m = queue.pop(0)

print (m, end = " ")

for neighbour in graph[m]:

if neighbour not in visited:

visited.append(neighbour)

queue.append(neighbour)

print("Following is the Breadth-First Search")

bfs(visited, graph, '5')

Output:

5 | P a g e

3. A* Algorithm

tree = {'S': [['A', 1], ['B', 5], ['C', 8]],

'A': [['S', 1], ['D', 3], ['E', 7], ['G', 9]],

'B': [['S', 5], ['G', 4]],

'C': [['S', 8], ['G', 5]],

'D': [['A', 3]],

'E': [['A', 7]]}

tree2 = {'S': [['A', 1], ['B', 2]],

'A': [['S', 1]],

'B': [['S', 2], ['C', 3], ['D', 4]],

'C': [['B', 2], ['E', 5], ['F', 6]],

'D': [['B', 4], ['G', 7]],

'E': [['C', 5]],

'F': [['C', 6]]

}

heuristic = {'S': 8, 'A': 8, 'B': 4, 'C': 3, 'D': 5000, 'E': 5000, 'G': 0}

heuristic2 = {'S': 0, 'A': 5000, 'B': 2, 'C': 3, 'D': 4, 'E': 5000, 'F': 5000, 'G': 0}

cost = {'S': 0}

def AStarSearch():

global tree, heuristic

closed = []

opened = [['S', 8]]

while True:

6 | P a g e

fn = [i[1] for i in opened]

chosen_index = fn.index(min(fn))

node = opened[chosen_index][0]

closed.append(opened[chosen_index])

del opened[chosen_index]

if closed[-1][0] == 'G':

break

for item in tree[node]:

if item[0] in [closed_item[0] for closed_item in closed]:

continue

cost.update({item[0]: cost[node] + item[1]})

fn_node = cost[node] + heuristic[item[0]] + item[1]

temp = [item[0], fn_node]

opened.append(temp)

trace_node = 'G'

optimal_sequence = ['G']

for i in range(len(closed)-2, -1, -1):

check_node = closed[i][0]

if trace_node in [children[0] for children in tree[check_node]]:

children_costs = [temp[1] for temp in tree[check_node]]

children_nodes = [temp[0] for temp in tree[check_node]]

if cost[check_node] + children_costs[children_nodes.index(trace_node)] == cost[trace_node]:

optimal_sequence.append(check_node)

trace_node = check_node

optimal_sequence.reverse()

return closed, optimal_sequence

if name == ' main ':

visited_nodes, optimal_nodes = AStarSearch()

print('visited nodes: ' + str(visited_nodes))

print('optimal nodes sequence: ' + str(optimal_nodes))

7 | P a g e

Output:

8 | P a g e

4. Min-max algorithm of Game Theory

import math

def minimax (curDepth, nodeIndex,

maxTurn, scores,

targetDepth):

if (curDepth == targetDepth):

return scores[nodeIndex]

if (maxTurn):

return max(minimax(curDepth + 1, nodeIndex * 2,

False, scores, targetDepth),

minimax(curDepth + 1, nodeIndex * 2 + 1,

False, scores, targetDepth))

else:

return min(minimax(curDepth + 1, nodeIndex * 2,

True, scores, targetDepth),

minimax(curDepth + 1, nodeIndex * 2 + 1,

True, scores, targetDepth))

scores = [3, 5, 2, 9, 12, 5, 23, 23]

treeDepth = math.log(len(scores), 2)

print("The optimal value is : ", end = "")

print(minimax(0, 0, True, scores, treeDepth))

9 | P a g e

Output:

10 | P a g e

5. Write a Program to analyze data and display in
the form of a bar graph for two departments of a
company having employee id numbers on X-axis
and their salaries on Y axis.

import matplotlib.pyplot as pl

import numpy as np

EmpId=['E01','E02','E03','E04','E05']

Sal = [10000,20000,30000,40000,50000]

pl.xlabel("Employee IDs")

pl.ylabel("Salary")

pl.bar(EmpId,Sal)

pl.show()

Output:

11 | P a g e

6. Write a program to analyze and draw a line

graph to show the profits of a company in

various years.

import matplotlib.pyplot as pl

import numpy as np

Yr =['2019','2020','2021','2022','2023']

Profit = ['1Mil $','2Mil $','3Mil $','4Mil $','5Mil $']

pl.xlabel("Profit")

pl.ylabel("Years")

pl.plot(Yr,Profit)

pl.show()

Output:

12 | P a g e

7. Customer segmentation project using K
Means Clustering.

. Imports:

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

from sklearn.cluster import KMeans

. Data Collection & Analysis:

loading the data from csv file to a Pandas DataFrame

customer_data = pd.read_csv('/content/Mall_Customers.csv')

first 5 rows in the dataframe

customer_data.head()

13 | P a g e

finding the number of rows and columns

customer_data.shape

getting some informations about the dataset

customer_data.info()

checking for missing values

customer_data.isnull().sum()

14 | P a g e

. Choosing the Annual Income Column & Spending Score column:

X = customer_data.iloc[:,[3,4]].values

print(X)

. Choosing the number of clusters:

. WCSS -> Within Clusters Sum of Squares

finding wcss value for different number of clusters

wcss = []

for i in range(1,11):

kmeans = KMeans(n_clusters=i, init='k-means++', random_state=42)

kmeans.fit(X)

wcss.append(kmeans.inertia_)

plot an elbow graph

sns.set()

plt.plot(range(1,11), wcss)

plt.title('The Elbow Point Graph')

plt.xlabel('Number of Clusters')

plt.ylabel('WCSS')

plt.show()

15 | P a g e

. Optimum Number of Clusters = 5

. Training the k-Means Clustering Model:

kmeans = KMeans(n_clusters=5, init='k-means++', random_state=0)

return a label for each data point based on their cluster

Y = kmeans.fit_predict(X)

print(Y)

16 | P a g e

. 5 Clusters - 0, 1, 2, 3, 4

. Visualizing all the Clusters:

plotting all the clusters and their Centroids

plt.figure(figsize=(8,8))

plt.scatter(X[Y==0,0], X[Y==0,1], s=50, c='green', label='Cluster 1')
plt.scatter(X[Y==1,0], X[Y==1,1], s=50, c='red', label='Cluster 2')

plt.scatter(X[Y==2,0], X[Y==2,1], s=50, c='yellow', label='Cluster 3')

plt.scatter(X[Y==3,0], X[Y==3,1], s=50, c='violet', label='Cluster 4')

plt.scatter(X[Y==4,0], X[Y==4,1], s=50, c='blue', label='Cluster 5')

plot the centroids

plt.scatter(kmeans.cluster_centers_[:,0], kmeans.cluster_centers_[:,1], s=100, c='cyan',

label='Centroids')

plt.title('Customer Groups')

plt.xlabel('Annual Income')

plt.ylabel('Spending Score')

plt.show()

17 | P a g e

8. Music genre classification project.

. Imports:

from python_speech_features import mfcc
import scipy.io.wavfile as wav
import numpy as np

from tempfile import TemporaryFile
import os
import pickle
import random
import operator

import math
import numpy as np

. Define a function to get the distance between feature vectors and find neighbors:

def getNeighbors(trainingSet, instance, k):
distances = []
for x in range (len(trainingSet)):

dist = distance(trainingSet[x], instance, k)+ distance(instance, trainingSet[x], k)
distances.append((trainingSet[x][2], dist))

distances.sort(key=operator.itemgetter(1))
neighbors = []
for x in range(k):

neighbors.append(distances[x][0])
return neighbors

. Identify the nearest neighbors:

def nearestClass(neighbors):
classVote = {}

for x in range(len(neighbors)):

response = neighbors[x]
if response in classVote:

classVote[response]+=1
else:

classVote[response]=1

sorter = sorted(classVote.items(), key = operator.itemgetter(1), reverse=True)
return sorter[0][0]

18 | P a g e

. Define a function for model evaluation:

def getAccuracy(testSet, predictions):
correct = 0
for x in range (len(testSet)):

if testSet[x][-1]==predictions[x]:
correct+=1

return 1.0*correct/len(testSet)

. Extract features from the dataset and dump these features into a binary .dat file “my.dat”:

directory = " path_to_dataset "
f= open("my.dat" ,'wb')
i=0

for folder in os.listdir(directory):

i+=1
if i==11 :

break
for file in os.listdir(directory+folder):

(rate,sig) = wav.read(directory+folder+"/"+file)
mfcc_feat = mfcc(sig,rate ,winlen=0.020, appendEnergy = False)
covariance = np.cov(np.matrix.transpose(mfcc_feat))
mean_matrix = mfcc_feat.mean(0)
feature = (mean_matrix , covariance , i)
pickle.dump(feature , f)

f.close()

. Train and test split on the dataset:

dataset = []
def loadDataset(filename , split , trSet , teSet):

with open("my.dat" , 'rb') as f:
while True:

try:
dataset.append(pickle.load(f))

except EOFError:
f.close()
break

for x in range(len(dataset)):

if random.random() <split :
trSet.append(dataset[x])

else:
teSet.append(dataset[x])

trainingSet = []
testSet = []
loadDataset("my.dat" , 0.66, trainingSet, testSet)

19 | P a g e

. Make prediction using k Nearest Neighbours and get the accuracy on test data:

leng = len(testSet)
predictions = []
for x in range (leng):

predictions.append(nearestClass(getNeighbors(trainingSet ,testSet[x] , 5)))

accuracy1 = getAccuracy(testSet , predictions)
print(accuracy1)

. Test the classifier with new audio file

from python_speech_features import mfcc
import scipy.io.wavfile as wav
import numpy as np
from tempfile import TemporaryFile
import os
import pickle
import random
import operator

import math
import numpy as np
from collections import defaultdict

dataset = []
def loadDataset(filename):

with open("my.dat" , 'rb') as f:
while True:

try:
dataset.append(pickle.load(f))

except EOFError:
f.close()
break

loadDataset("my.dat")

def distance(instance1 , instance2 , k):

distance =0
mm1 = instance1[0]
cm1 = instance1[1]
mm2 = instance2[0]
cm2 = instance2[1]
distance = np.trace(np.dot(np.linalg.inv(cm2), cm1))
distance+=(np.dot(np.dot((mm2-mm1).transpose() , np.linalg.inv(cm2)) , mm2-mm1))
distance+= np.log(np.linalg.det(cm2)) - np.log(np.linalg.det(cm1))

20 | P a g e

distance-= k
return distance

def getNeighbors(trainingSet , instance , k):

distances =[]
for x in range (len(trainingSet)):

dist = distance(trainingSet[x], instance, k)+ distance(instance, trainingSet[x], k)
distances.append((trainingSet[x][2], dist))

distances.sort(key=operator.itemgetter(1))
neighbors = []
for x in range(k):

neighbors.append(distances[x][0])
return neighbors

def nearestClass(neighbors):

classVote ={}
for x in range(len(neighbors)):

response = neighbors[x]
if response in classVote:

classVote[response]+=1
else:

classVote[response]=1
sorter = sorted(classVote.items(), key = operator.itemgetter(1), reverse=True)
return sorter[0][0]

results=defaultdict(int)

i=1

for folder in os.listdir("./musics/wav_genres/"):
results[i]=folder
i+=1

(rate,sig)=wav.read(“sample_test.wav")
mfcc_feat=mfcc(sig,rate,winlen=0.020,appendEnergy=False)
covariance = np.cov(np.matrix.transpose(mfcc_feat))
mean_matrix = mfcc_feat.mean(0)
feature=(mean_matrix,covariance,0)

pred=nearestClass(getNeighbors(dataset ,feature , 5))

print(results[pred])

21 | P a g e

9. Stock price prediction project using LSTM (Long
short-term memory).

. Imports:

import pandas as pd
import numpy as np

import matplotlib.pyplot as plt
%matplotlib inline

from matplotlib.pylab import rcParams
rcParams['figure.figsize']=20,10
from keras.models import Sequential
from keras.layers import LSTM,Dropout,Dense

from sklearn.preprocessing import MinMaxScaler

. Read the dataset:

df=pd.read_csv("NSE-TATA.csv")
df.head()

22 | P a g e

. Analyze the closing prices from dataframe:

df["Date"]=pd.to_datetime(df.Date,format="%Y-%m-%d")
df.index=df['Date']

plt.figure(figsize=(16,8))
plt.plot(df["Close"],label='Close Price history')

. Sort the dataset on date time and filter “Date” and “Close” columns:

data=df.sort_index(ascending=True,axis=0)
new_dataset=pd.DataFrame(index=range(0,len(df)),columns=['Date','Close'])

for i in range(0,len(data)):
new_dataset["Date"][i]=data['Date'][i]
new_dataset["Close"][i]=data["Close"][i]

23 | P a g e

. Normalize the new filtered dataset:

scaler=MinMaxScaler(feature_range=(0,1))
final_dataset=new_dataset.values

train_data=final_dataset[0:987,:]
valid_data=final_dataset[987:,:]

new_dataset.index=new_dataset.Date
new_dataset.drop("Date",axis=1,inplace=True)
scaler=MinMaxScaler(feature_range=(0,1))
scaled_data=scaler.fit_transform(final_dataset)

x_train_data,y_train_data=[],[]

for i in range(60,len(train_data)):

x_train_data.append(scaled_data[i-60:i,0])
y_train_data.append(scaled_data[i,0])

x_train_data,y_train_data=np.array(x_train_data),np.array(y_train_data)

x_train_data=np.reshape(x_train_data,(x_train_data.shape[0],x_train_data.shape[1],1))

. Build and train the LSTM model:

lstm_model=Sequential()
lstm_model.add(LSTM(units=50,return_sequences=True,input_shape=(x_train_data.shape[1],1)))
lstm_model.add(LSTM(units=50))
lstm_model.add(Dense(1))

inputs_data=new_dataset[len(new_dataset)-len(valid_data)-60:].values
inputs_data=inputs_data.reshape(-1,1)
inputs_data=scaler.transform(inputs_data)

lstm_model.compile(loss='mean_squared_error',optimizer='adam')
lstm_model.fit(x_train_data,y_train_data,epochs=1,batch_size=1,verbose=2)

. Take a sample of a dataset to make stock price predictions using the LSTM model:

X_test=[]
for i in range(60,inputs_data.shape[0]):

X_test.append(inputs_data[i-60:i,0])
X_test=np.array(X_test)

X_test=np.reshape(X_test,(X_test.shape[0],X_test.shape[1],1))
predicted_closing_price=lstm_model.predict(X_test)
predicted_closing_price=scaler.inverse_transform(predicted_closing_price)

. Save the LSTM model:

lstm_model.save("saved_model.h5")

24 | P a g e

. Visualize the predicted stock costs with actual stock costs:

train_data=new_dataset[:987]
valid_data=new_dataset[987:]
valid_data['Predictions']=predicted_closing_price
plt.plot(train_data["Close"])
plt.plot(valid_data[['Close',"Predictions"]])

25 | P a g e

10. Fake news detection project:

. Imports:

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

from sklearn.feature_extraction.text import CountVectorizer

from sklearn.feature_extraction.text import TfidfTransformer

from sklearn import feature_extraction, linear_model, model_selection, preprocessing

from sklearn.metrics import accuracy_score

from sklearn.model_selection import train_test_split

from sklearn.pipeline import Pipeline

. Read datasets:

fake = pd.read_csv("data/Fake.csv")

true = pd.read_csv("data/True.csv")

fake.shape

true.shape

26 | P a g e

. Data cleaning and preparation:

Add flag to track fake and real

fake['target'] = 'fake'

true['target'] = 'true'

Concatenate dataframes

data = pd.concat([fake, true]).reset_index(drop = True)

data.shape

Shuffle the data

from sklearn.utils import shuffle

data = shuffle(data)

data = data.reset_index(drop=True)

Check the data

data.head()

27 | P a g e

Removing the title (we will only use the text)

data.drop(["title"],axis=1,inplace=True)

Convert to lowercase

data['text'] = data['text'].apply(lambda x: x.lower())

Remove punctuation

import string

def punctuation_removal(text):

all_list = [char for char in text if char not in string.punctuation]

clean_str = ''.join(all_list)

return clean_str

data['text'] = data['text'].apply(punctuation_removal)

Removing stopwords

import nltk
nltk.download('stopwords')

from nltk.corpus import stopwords

stop = stopwords.words('english')

data['text'] = data['text'].apply(lambda x: ' '.join([word for word in x.split() if word not in (stop)]))

data.head()

. Basic data exploration:

How many articles per subject?

print(data.groupby(['subject'])['text'].count())

data.groupby(['subject'])['text'].count().plot(kind="bar")

plt.show()

28 | P a g e

29 | P a g e

How many fake and real articles?

print(data.groupby(['target'])['text'].count())

data.groupby(['target'])['text'].count().plot(kind="bar")

plt.show()

Most frequent words counter

from nltk import tokenize

token_space = tokenize.WhitespaceTokenizer()

def counter(text, column_text, quantity):

all_words = ' '.join([text for text in text[column_text]])
token_phrase = token_space.tokenize(all_words)

30 | P a g e

frequency = nltk.FreqDist(token_phrase)

df_frequency = pd.DataFrame({"Word": list(frequency.keys()),

"Frequency": list(frequency.values())})

df_frequency = df_frequency.nlargest(columns = "Frequency", n = quantity)

plt.figure(figsize=(12,8))

ax = sns.barplot(data = df_frequency, x = "Word", y = "Frequency", color = 'blue')

ax.set(ylabel = "Count")

plt.xticks(rotation='vertical')

plt.show()

Most frequent words in fake news

counter(data[data["target"] == "fake"], "text", 20)

Most frequent words in real news

counter(data[data["target"] == "true"], "text", 20)

31 | P a g e

32 | P a g e

	AI with Python
	1. Depth-First Search
	2. Breadth First Search
	4. Min-max algorithm of Game Theory
	5. Write a Program to analyze data and display in
	6. Write a program to analyze and draw a line

	7. Customer segmentation project using K
	. Imports:
	. Data Collection & Analysis:
	. Choosing the number of clusters:
	. Optimum Number of Clusters = 5
	. 5 Clusters - 0, 1, 2, 3, 4
	8. Music genre classification project.
	. Imports:
	. Define a function to get the distance between feature vectors and find neighbors:
	. Identify the nearest neighbors:
	. Define a function for model evaluation:
	. Extract features from the dataset and dump these features into a binary .dat file “my.dat”:
	. Train and test split on the dataset:
	. Make prediction using k Nearest Neighbours and get the accuracy on test data:
	. Test the classifier with new audio file

	9. Stock price prediction project using LSTM (Long
	. Imports:
	. Read the dataset:
	. Analyze the closing prices from dataframe:
	. Sort the dataset on date time and filter “Date” and “Close” columns:
	. Normalize the new filtered dataset:
	. Build and train the LSTM model:
	. Take a sample of a dataset to make stock price predictions using the LSTM model:
	. Save the LSTM model:
	. Visualize the predicted stock costs with actual stock costs:

	10. Fake news detection project:
	. Imports:
	. Read datasets:
	. Data cleaning and preparation:
	. Basic data exploration:

